你的位置:首頁(yè) > 產(chǎn)品展示 > 光纖器件 > 光纖跳線 >Thorlabs多模光纖跳線
產(chǎn)品詳細(xì)頁(yè)Thorlabs多模光纖跳線
- 產(chǎn)品型號(hào):
- 更新時(shí)間:2023-12-19
- 產(chǎn)品介紹:Thorlabs多模光纖跳線由FT400EMT階躍折射率多模光纖構(gòu)成,一端為FC/PC或SMA905接頭,另一端為經(jīng)過(guò)平切的裸纖。庫(kù)存標(biāo)準(zhǔn)跳線的長(zhǎng)度為3 m。FC/PC或SMA905終端具有長(zhǎng)為15 cm的Ø3 mm松套管。跳線的裸纖端鍍有Ø730 ± 30 µm的藍(lán)色Tefzel膜,且平切角為0°。
- 廠商性質(zhì):代理商
- 在線留言
產(chǎn)品介紹
品牌 | Thorlabs | 價(jià)格區(qū)間 | 面議 |
---|---|---|---|
組件類(lèi)別 | 光學(xué)元件 | 應(yīng)用領(lǐng)域 | 電子 |
Thorlabs多模光纖跳線,F(xiàn)C/PC或SMA接頭裸纖
Thorlabs多模光纖跳線特性
一端為裸纖的多模光纖跳線
另一端為FC/PC(2.0 mm窄鍵)或SM905接頭
多模光纖纖芯Ø400 µm,跳線長(zhǎng)度為3 m
Ø3 mm橘色松套管
光纖鍍有Ø730 ± 30 µm Tefzel®膜
可以定制跳線
這些多模光纖跳線由FT400EMT階躍折射率多模光纖構(gòu)成,一端為FC/PC或SMA905接頭,另一端為經(jīng)過(guò)平切的裸纖。庫(kù)存標(biāo)準(zhǔn)跳線的長(zhǎng)度為3 m。FC/PC或SMA905終端具有長(zhǎng)為15 cm的Ø3 mm松套管。跳線的裸纖端鍍有Ø730 ± 30 µm的藍(lán)色Tefzel膜,且平切角為0°。
每根跳線包含一個(gè)防塵帽,以防灰塵落入FC/PC或SMA905接頭或其他損害。其他用于FC/PC終端的CAPF塑料光纖保護(hù)帽和CAPFM金屬螺紋光纖保護(hù)帽,以及用于SMA終端的CAPM塑料光纖保護(hù)帽和CAPMM金屬螺紋保護(hù)帽都單獨(dú)出售。跳線的平切端包含一個(gè)塑料保護(hù)套。請(qǐng)注意,這類(lèi)跳線還不能熔接。不過(guò),使用Thorlabs的Vytran®切割機(jī)和熔接機(jī)可將跳線中的光纖熔接到實(shí)驗(yàn)裝置中。
這些跳線不適合需要光纖傳輸高光功率的應(yīng)用,因?yàn)檫^(guò)高的功率會(huì)使接頭中使用的環(huán)氧樹(shù)脂受熱過(guò)度而造成損害。詳細(xì)信息請(qǐng)看損傷閾值標(biāo)簽。Thorlabs還提供除無(wú)接頭光纖之外的其他跳線選項(xiàng),它們可以兼容高功率。下表中包含了相關(guān)鏈接。
如果需要長(zhǎng)度較短的光纖,Thorlabs推薦使用適合切割大芯徑光纖的S90R紅寶石光纖刻劃刀,以及T21S31光纖剝除工具。我們也提供光纖終端清潔和修理套件。有關(guān)光纖拋光和切割的詳細(xì)步驟和其他信息,請(qǐng)看我們的光纖終端指南。
如果庫(kù)存標(biāo)準(zhǔn)跳線無(wú)法滿足您的應(yīng)用需求,請(qǐng)看我們的定制跳線頁(yè)面定制符合您要求的跳線。
跳線的裸纖端
In-Stock Multimode Fiber Optic Patch Cable Selection | ||||||
Step Index | Graded Index | Fiber Bundles | ||||
Uncoated | Coated | Mid-IR | Optogenetics | Specialized Applications | ||
SMA | AR-Coated SMA | Fluoride FC and SMA | Lightweight FC/PC | High-Power SMA | FC/PC |
多模光纖教程
在光纖中引導(dǎo)光
光纖屬于光波導(dǎo),光波導(dǎo)是一種更為廣泛的光學(xué)元件,可以利用全內(nèi)反射(TIR)在固體或液體結(jié)構(gòu)中限制并引導(dǎo)光。光纖通??梢栽诒姸鄳?yīng)用中使用;常見(jiàn)的例子包括通信、光譜學(xué)、照明和傳感器。
比較常見(jiàn)的玻璃(石英)纖維使用一種稱(chēng)之為階躍折射率光纖的結(jié)構(gòu),如右圖所示。這種光纖的纖芯由一種折射率比外面包層高的材料構(gòu)成。在光纖中以臨界角入射時(shí),光會(huì)在纖芯/包層界面產(chǎn)生全反射,而不會(huì)折射到周?chē)慕橘|(zhì)中。為了達(dá)到TIR的條件,發(fā)射到光纖中入射光的角度必須小于某個(gè)角度,即接收角,θacc。根據(jù)斯涅耳定律可以計(jì)算出這個(gè)角:
其中,ncore為纖芯的折射率,nclad為光纖包層的折射率,n為外部介質(zhì)的折射率,θcrit為臨界角,θacc為光纖的接收半角。數(shù)值孔徑(NA)是一個(gè)無(wú)量綱量,由光纖制造商用來(lái)確定光纖的接收角,表示為:
對(duì)于芯徑(多模)較大的階躍折射率光纖,使用這個(gè)等式可以直接計(jì)算出NA。NA也可以由實(shí)驗(yàn)確定,通過(guò)追蹤遠(yuǎn)場(chǎng)光束分布并測(cè)量光束中心與光強(qiáng)為大光強(qiáng)5%的點(diǎn)之間的角度即可;但是,直接計(jì)算NA得出的值更為準(zhǔn)確。
光纖的全內(nèi)反射
光纖中的模式數(shù)量
光在光纖中傳播的每種可能路徑即為光纖的導(dǎo)模。根據(jù)纖芯/包層區(qū)域的尺寸、折射率和波長(zhǎng),單光纖內(nèi)可支持從一種到數(shù)千種模式。而其中常使用兩種為單模(支持單導(dǎo)模)和多模(支持多種導(dǎo)模)。在多模光纖中,低階模傾向于在空間上將光限制在纖芯內(nèi);而高階模傾向于在空間上將光限制在纖芯/包層界面的附近。
使用一些簡(jiǎn)單的計(jì)算就可以估算出光纖支持的模(單模或多模)的數(shù)量。歸一化頻率,也就是常說(shuō)的V值,是一個(gè)無(wú)量綱的數(shù),與自由空間頻率成比例,但被歸為光纖的引導(dǎo)屬性。V值表示為:
其中V為歸一化頻率(V值),a為纖芯半徑,λ為自由空間波長(zhǎng)。多模光纖的V值非常大;例如,芯徑為Ø50 µm、數(shù)值孔徑為0.39的多模光纖,在波長(zhǎng)為1.5 µm時(shí),V值為40.8。
對(duì)于具有較大V值的多模光纖,可以使用下式近似計(jì)算其支持的模式數(shù)量:
上面例子中,芯徑為Ø50 µm、NA為0.39的多模光纖支持大約832種不同的導(dǎo)模,這些??梢酝瑫r(shí)穿過(guò)光纖。
單模光纖V值必須小于截止頻率2.405,這表示在這個(gè)時(shí)候,光只耦合到光纖的基模中。為了滿足這個(gè)條件,單模光纖的纖芯尺寸和NA要遠(yuǎn)小于同波長(zhǎng)下的多模光纖。例如SMF-28超單模光纖的標(biāo)稱(chēng)NA為0.14,芯徑為Ø8.2 µm,在波長(zhǎng)為1550
nm時(shí),V值為2.404。
衰減來(lái)源
光纖損耗,也稱(chēng)之為衰減,是光纖的特性,可以通過(guò)量化來(lái)預(yù)測(cè)光纖裝置內(nèi)的總透射功率損耗。這些損耗來(lái)源一般與波長(zhǎng)相關(guān),因光纖的使用材料或光纖的彎曲等而有所差異。常見(jiàn)衰減來(lái)源的詳情如下:
吸收
標(biāo)準(zhǔn)光纖中的光通過(guò)固體材料引導(dǎo),因此,光在光纖中傳播會(huì)因吸收而產(chǎn)生損耗。標(biāo)準(zhǔn)光纖使用熔融石英制造,經(jīng)優(yōu)化可在波長(zhǎng)1300 nm-1550 nm的范圍內(nèi)傳播。波長(zhǎng)更長(zhǎng)(>2000nm)時(shí),熔融石英內(nèi)的多聲子相互作用造成大量吸收。使用氟化鋯、氟化銦等氟氧物玻璃制造中紅外光纖,主要是因?yàn)樗鼈兲幱谶@些波長(zhǎng)范圍時(shí)損耗較低。氟化鋯、氟化銦的多聲子邊分別為~3.6 µm和~4.6 µm。
光纖內(nèi)的污染物也會(huì)造成吸收損耗。其中一種污染物就是困在玻璃纖維中的水分子,可以吸收波長(zhǎng)在1300 nm和2.94 µm的光。由于通信信號(hào)和某些激光器也是在這個(gè)區(qū)域里工作,光纖中的任意水分子都會(huì)明顯地衰減信號(hào)。
玻璃纖維中離子的濃度通常由制造商控制,以便調(diào)節(jié)光纖的傳播/衰減屬性。例如,石英中本來(lái)就存在羥基(OH-),可以吸收近紅外到紅外光譜的光。因此,羥基濃度較低的光纖更適合在通信波長(zhǎng)下傳播。而羥基濃度較高的光纖在紫外波長(zhǎng)范圍時(shí)有助于傳播,因此,更適合對(duì)熒光或UV-VIS光譜學(xué)等應(yīng)用感興趣的用戶。
散射
對(duì)于大多數(shù)光纖應(yīng)用來(lái)說(shuō),光散射也是損耗的來(lái)源,通常在光遇到介質(zhì)的折射率發(fā)生變化時(shí)產(chǎn)生。這些變化可以是由雜質(zhì)、微?;驓馀菀鸬耐庠谧兓?;也可以是由玻璃密度的波動(dòng)、成分或相位態(tài)引起的內(nèi)在變化。散射與光的波長(zhǎng)呈負(fù)相關(guān)關(guān)系,因此,在光譜中的紫外或藍(lán)光區(qū)域等波長(zhǎng)較短時(shí),散射損耗會(huì)比較大。使用恰當(dāng)?shù)墓饫w清潔、操作和存儲(chǔ)存步驟可以盡可能地減少光纖*的雜質(zhì),避免產(chǎn)生較大的散射損耗。
彎曲損耗
因光纖的外部和內(nèi)部幾何發(fā)生變化而產(chǎn)生的損耗稱(chēng)之為彎曲損耗。通常包含兩大類(lèi):宏彎損耗和微彎損耗。
宏彎損耗造成的衰減
微彎損耗造成的衰減
宏彎損耗一般與光纖的物理彎曲相關(guān);例如,將其卷成圈。如右圖所示,引導(dǎo)的光在空間上分布在光纖的纖芯和包層區(qū)域。以某半徑彎曲光纖時(shí),在彎曲外半徑的光不能在不超過(guò)光速時(shí)維持相同的空間模分布。相反,由于輻射能量會(huì)損耗到周邊環(huán)境中。彎曲半徑較大時(shí),與彎曲相關(guān)的損耗會(huì)比較??;但彎曲半徑小于光纖的推薦彎曲半徑時(shí),彎曲損耗會(huì)非常大。光纖可以在彎曲半徑較小時(shí)進(jìn)行短時(shí)間工作;但如果要長(zhǎng)期儲(chǔ)存,彎曲半徑應(yīng)該大于推薦值。使用恰當(dāng)?shù)膬?chǔ)存條件(溫度和彎曲半徑)可以降低對(duì)光纖造成性損傷的幾率;FSR1光纖纏繞盤(pán)設(shè)計(jì)用來(lái)大程度地減少高彎曲損耗。
微彎損耗由光纖的內(nèi)部幾何,尤其是纖芯和包層發(fā)生變化而產(chǎn)生。光纖結(jié)構(gòu)中的這些隨機(jī)變化(即凸起)會(huì)破壞全內(nèi)反射所需的條件,使得傳播的光耦合到非傳播模中,造成泄露(詳情請(qǐng)看右圖)。與由彎曲半徑控制的宏彎損耗不同,微彎損耗是由制造光纖時(shí)在光纖內(nèi)造成的性缺陷而產(chǎn)生。
包層模
雖然多模光纖中的大多數(shù)光通過(guò)纖芯內(nèi)的TIR引導(dǎo),但是由于TIR發(fā)生在包層與涂覆層/保護(hù)層的界面,在纖芯和包層內(nèi)引導(dǎo)光的高階模也可能存在。這樣就產(chǎn)生了我們所熟知的包層模。這樣的例子可在右邊的光束分布測(cè)量中看到,其中體現(xiàn)了包層模包層中的光強(qiáng)比纖芯中要高。這些??梢圆粋鞑?即它們不滿足TIR的條件),也可以在一段很長(zhǎng)的光纖中傳播。由于包層模一般為高階模,在光纖彎曲和出現(xiàn)微彎缺陷時(shí),它們就是損耗的來(lái)源。通過(guò)接頭連接兩個(gè)光纖時(shí)包層模會(huì)消失,因?yàn)樗鼈儾荒茉诠饫w之間輕松耦合。
由于包層模對(duì)光束空間輪廓的影響,有些應(yīng)用(比如發(fā)射到自由空間中)中可能不需要包層模。光纖較長(zhǎng)時(shí),這些模會(huì)自然衰減。對(duì)于長(zhǎng)度小于10 m的光纖,消除包層模的一種辦法就是將光纖纏繞在半徑合適的芯軸上,這樣能保留需要的傳播模式。
在FT200EMT多模光纖與M565F1 LED的光束輪廓中,展現(xiàn)了包層而不是纖芯引導(dǎo)的光。
入纖方式
多模光纖未充滿條件
對(duì)于在NA較大時(shí)接收光的多模光纖來(lái)說(shuō),光耦合到光纖的的條件(光源類(lèi)型、光束直徑、NA)對(duì)性能有著極大影響。在耦合界面,光的光束直徑和NA小于光纖的芯徑和NA時(shí),就出現(xiàn)了未充滿的入纖條件。這種情況的常見(jiàn)例子就是將激光光源發(fā)射到較大的多模光纖。從下面的圖和光束輪廓測(cè)量可以看出,未充滿時(shí)會(huì)使光在空間上集中到光纖的中心,優(yōu)先充滿低階模,而非高階模。因此,它們對(duì)宏彎損耗不太敏感,也沒(méi)有包層模。這種條件下,所測(cè)的插入損耗也會(huì)小于典型值,光纖纖芯處有著較高的功率密度。
展示未充滿條件的圖(左邊)和使用FT200EMT多模光纖進(jìn)行的光束輪廓測(cè)量(右邊)。
多模光纖過(guò)滿條件
在耦合界面,光束直徑和NA大于光纖的芯徑和NA時(shí)就出現(xiàn)了過(guò)滿的情況。實(shí)現(xiàn)這種條件的一個(gè)方法就是將LED光源的光發(fā)射到較小的多模光纖中。過(guò)滿時(shí)會(huì)將整個(gè)纖芯和部分包層裸露在光中,均勻充滿低階模和高階模(請(qǐng)看下圖),增加耦合到光纖包層模的可能性。高階模比例的增加意味著過(guò)滿光纖對(duì)彎曲損耗會(huì)更為敏感。在這種條件下,所測(cè)的插入損耗會(huì)大于典型值,與未充滿光纖條件相比,會(huì)產(chǎn)生較高的總輸出功率。
展示過(guò)滿條件的圖(左邊)和使用FT200EMT多模光纖進(jìn)行的光束輪廓測(cè)量(右邊)。
多模光纖未充滿或過(guò)滿條件各有優(yōu)劣,這取決于特定應(yīng)用的要求。如需測(cè)量多模光纖的基準(zhǔn)性能,Thorlabs建議使用光束直徑為光纖芯徑70-80%的入纖條件。過(guò)滿條件在短距離時(shí)輸出功率更大;而長(zhǎng)距離(>10 - 20 m)時(shí),對(duì)衰減較為敏感的高階模會(huì)消失。
鍵槽對(duì)準(zhǔn)
FC/PC和FC/APC跳線鍵槽對(duì)準(zhǔn)
FC/PC和FC/APC跳線帶有2.0 mm窄鍵或2.2
mm寬鍵,可以插入匹配元件對(duì)應(yīng)的槽中。鍵槽對(duì)準(zhǔn)對(duì)于正確對(duì)齊所連光纖跳線的纖芯關(guān)重要,能夠大程度地減少連接的插入損耗。
例如,Thorlabs精心設(shè)計(jì)和制造用于FC/PC和FC/APC終端跳線的匹配套管,以確保正確使用時(shí)能夠?qū)崿F(xiàn)良好的對(duì)準(zhǔn)。為了達(dá)到佳對(duì)準(zhǔn),需將跳線上的對(duì)準(zhǔn)鍵插入對(duì)應(yīng)匹配套管上的槽中。Thorlabs提供帶有2.2 mm寬鍵槽或2.0 mm窄鍵槽的匹配套管。
寬鍵槽匹配套管
2.2 mm寬鍵槽匹配套管兼容寬鍵和窄鍵接頭。但是,將窄鍵接頭插入寬鍵槽時(shí),接頭可在匹配套管內(nèi)輕微旋轉(zhuǎn)(如左下方的動(dòng)畫(huà)所示)。這種配置對(duì)于FC/PC接頭的跳線是可以接受的,但對(duì)于FC/APC應(yīng)用,我們還是建議使用窄鍵槽匹配套管,以實(shí)現(xiàn)優(yōu)對(duì)準(zhǔn)。
窄鍵槽匹配套管
2.0 mm窄鍵槽匹配套管能夠?qū)崿F(xiàn)帶角度窄鍵FC/APC接頭的良好對(duì)準(zhǔn),如右下方的動(dòng)畫(huà)所示。因此,它們不兼容具有2.2 mm寬鍵的接頭。請(qǐng)注意,Thorlabs制造的所有FC/PC和FC/APC跳線都使用窄鍵接頭。
寬鍵匹配套管和接頭之間的匹配
窄鍵匹配套管和接頭之間的匹配
寬鍵槽匹配套管和窄鍵接頭
窄鍵接頭插入寬鍵槽匹配套管之后,接頭還有旋轉(zhuǎn)空間。對(duì)于窄鍵FC/PC接頭而言,這一點(diǎn)可以接受,但對(duì)于窄鍵FC/APC接頭而言,這會(huì)產(chǎn)生很大的耦合損耗。
損傷閥值
激光誘導(dǎo)的光纖損傷
以下教程詳述了無(wú)終端(裸露的)、有終端光纖以及其他基于激光光源的光纖元件的損傷機(jī)制,包括空氣-玻璃界面(自由空間耦合或使用接頭時(shí))的損傷機(jī)制和光纖玻璃內(nèi)的損傷機(jī)制。諸如裸纖、光纖跳線或熔接耦合器等光纖元件可能受到多種潛在的損傷(比如,接頭、光纖端面和裝置本身)。光纖適用的大功率始終受到這些損傷機(jī)制的小值的限制。
雖然可以使用比例關(guān)系和一般規(guī)則估算損傷閾值,但是,光纖的損傷閾值在很大程度上取決于應(yīng)用和特定用戶。用戶可以以此教程為指南,估算大程度降低損傷風(fēng)險(xiǎn)的安全功率水平。如果遵守了所有恰當(dāng)?shù)闹苽浜瓦m用性指導(dǎo),用戶應(yīng)該能夠在的大功率水平以下操作光纖元件;如果有元件并未大功率,用戶應(yīng)該遵守下面描述的"實(shí)際安全水平"該,以安全操作相關(guān)元件??赡芙档凸β蔬m用能力并給光纖元件造成損傷的因素包括,但不限于,光纖耦合時(shí)未對(duì)準(zhǔn)、光纖端面受到污染或光纖本身有瑕疵。關(guān)于特定應(yīng)用中光纖功率適用能力的深入討論,請(qǐng)聯(lián)系技術(shù)支持[email protected]。
Quick Links |
Damage at the Air / Glass Interface |
Intrinsic Damage Threshold |
Preparation and Handling of Optical Fibers |
空氣-玻璃界面的損傷
空氣/玻璃界面有幾種潛在的損傷機(jī)制。自由空間耦合或使用光學(xué)接頭匹配兩根光纖時(shí),光會(huì)入射到這個(gè)界面。如果光的強(qiáng)度很高,就會(huì)降低功率的適用性,并給光纖造成性損傷。而對(duì)于使用環(huán)氧樹(shù)脂將接頭與光纖固定的終端光纖而言,高強(qiáng)度的光產(chǎn)生的熱量會(huì)使環(huán)氧樹(shù)脂熔化,進(jìn)而在光路中的光纖表面留下殘留物。
損傷的光纖端面
未損傷的光纖端面
裸纖端面的損傷機(jī)制
光纖端面的損傷機(jī)制可以建模為大光學(xué)元件,紫外熔融石英基底的工業(yè)標(biāo)準(zhǔn)損傷閾值適用于基于石英的光纖(參考右表)。但是與大光學(xué)元件不同,與光纖空氣/璃界面相關(guān)的表面積和光束直徑都非常小,耦合單模(SM)光纖時(shí)尤其如此,因此,對(duì)于給定的功率密度,入射到光束直徑較小的光纖的功率需要比較低。
右表列出了兩種光功率密度閾值:一種理論損傷閾值,一種"實(shí)際安全水平"。一般而言,理論損傷閾值代表在光纖端面和耦合條件非常好的情況下,可以入射到光纖端面且沒(méi)有損傷風(fēng)險(xiǎn)的大功率密度估算值。而"實(shí)際安全水平"功率密度代表光纖損傷的低風(fēng)險(xiǎn)。超過(guò)實(shí)際安全水平操作光纖或元件也是有可以的,但用戶必須遵守恰當(dāng)?shù)倪m用性說(shuō)明,并在使用前在低功率下驗(yàn)證性能。
計(jì)算單模光纖和多模光纖的有效面積單模光纖的有效面積是通過(guò)模場(chǎng)直徑(MFD)定義的,它是光通過(guò)光纖的橫截面積,包括纖芯以及部分包層。耦合到單模光纖時(shí),入射光束的直徑必須匹配光纖的MFD,才能達(dá)到良好的耦合效率。
例如,SM400單模光纖在400 nm下工作的模場(chǎng)直徑(MFD)大約是Ø3 µm,而SMF-28 Ultra單模光纖在1550 nm下工作的MFD為Ø10.5 µm。則兩種光纖的有效面積可以根據(jù)下面來(lái)計(jì)算:
SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5µm)2 = 7.07 µm2= 7.07 x 10-8cm2
SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 µm)2= 86.6 µm2= 8.66 x 10-7cm2
為了估算光纖端面適用的功率水平,將功率密度乘以有效面積。請(qǐng)注意,該計(jì)算假設(shè)的是光束具有均勻的強(qiáng)度分布,但其實(shí),單模光纖中的大多數(shù)激光束都是高斯形狀,使得光束中心的密度比邊緣處更高,因此,這些計(jì)算值將略高于損傷閾值或?qū)嶋H安全水平對(duì)應(yīng)的功率。假設(shè)使用連續(xù)光源,通過(guò)估算的功率密度,就可以確定對(duì)應(yīng)的功率水平:
SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理論損傷閾值)
7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (實(shí)際安全水平)
SMF-28 Ultra Fiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理論損傷閾值)
8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (實(shí)際安全水平)
多模(MM)光纖的有效面積由纖芯直徑確定,一般要遠(yuǎn)大于SM光纖的MFD值。如要獲得佳耦合效果,Thorlabs建議光束的光斑大小聚焦到纖芯直徑的70 - 80%。由于多模光纖的有效面積較大,降低了光纖端面的功率密度,因此,較高的光功率(一般上千瓦的數(shù)量級(jí))可以無(wú)損傷地耦合到多模光纖中。
Estimated Optical Power Densities on Air / Glass Interfacea | ||
Type | Theoretical Damage Thresholdb | Practical Safe Levelc |
CW(Average Power) | ~1 MW/cm2 | ~250 kW/cm2 |
10 ns Pulsed(Peak Power) | ~5 GW/cm2 | ~1 GW/cm2 |
所有值針對(duì)無(wú)終端(裸露)的石英光纖,適用于自由空間耦合到潔凈的光纖端面。
這是可以入射到光纖端面且沒(méi)有損傷風(fēng)險(xiǎn)的大功率密度估算值。用戶在高功率下工作前,必須驗(yàn)證系統(tǒng)中光纖元件的性能與可靠性,因其與系統(tǒng)有著緊密的關(guān)系。
這是在大多數(shù)工作條件下,入射到光纖端面且不會(huì)損傷光纖的安全功率密度估算值。
插芯/接頭終端相關(guān)的損傷機(jī)制
有終端接頭的光纖要考慮更多的功率適用條件。光纖一般通過(guò)環(huán)氧樹(shù)脂粘合到陶瓷或不銹鋼插芯中。光通過(guò)接頭耦合到光纖時(shí),沒(méi)有進(jìn)入纖芯并在光纖中傳播的光會(huì)散射到光纖的外層,再進(jìn)入插芯中,而環(huán)氧樹(shù)脂用來(lái)將光纖固定在插芯中。如果光足夠強(qiáng),就可以熔化環(huán)氧樹(shù)脂,使其氣化,并在接頭表面留下殘?jiān)?。這樣,光纖端面就出現(xiàn)了局部吸收點(diǎn),造成耦合效率降低,散射增加,進(jìn)而出現(xiàn)損傷。
與環(huán)氧樹(shù)脂相關(guān)的損傷取決于波長(zhǎng),出于以下幾個(gè)原因。一般而言,短波長(zhǎng)的光比長(zhǎng)波長(zhǎng)的光散射更強(qiáng)。由于短波長(zhǎng)單模光纖的MFD較小,且產(chǎn)生更多的散射光,則耦合時(shí)的偏移也更大。
為了大程度地減小熔化環(huán)氧樹(shù)脂的風(fēng)險(xiǎn),可以在光纖端面附近的光纖與插芯之間構(gòu)建無(wú)環(huán)氧樹(shù)脂的氣隙光纖接頭。我們的高功率多模光纖跳線就使用了這種設(shè)計(jì)特點(diǎn)的接頭。
曲線圖展現(xiàn)了帶終端的單模石英光纖的大概功率適用水平。每條線展示了考慮具體損傷機(jī)制估算的功率水平。大功率適用性受到所有相關(guān)損傷機(jī)制的低功率水平限制(由實(shí)線表示)。
光纖內(nèi)的損傷閾值
除了空氣玻璃界面的損傷機(jī)制外,光纖本身的損傷機(jī)制也會(huì)限制光纖使用的功率水平。這些限制會(huì)影響所有的光纖組件,因?yàn)樗鼈兇嬖谟诠饫w本身。光纖內(nèi)的兩種損傷包括彎曲損耗和光暗化損傷。
彎曲損耗
光在纖芯內(nèi)傳播入射到纖芯包層界面的角度大于臨界角會(huì)使其無(wú)法全反射,光在某個(gè)區(qū)域就會(huì)射出光纖,這時(shí)候就會(huì)產(chǎn)生彎曲損耗。射出光纖的光一般功率密度較高,會(huì)燒壞光纖涂覆層和周?chē)乃商坠堋?/span>
有一種叫做雙包層的特種光纖,允許光纖包層(第二層)也和纖芯一樣用作波導(dǎo),從而降低彎折損傷的風(fēng)險(xiǎn)。通過(guò)使包層/涂覆層界面的臨界角高于纖芯/包層界面的臨界角,射出纖芯的光就會(huì)被限制在包層內(nèi)。這些光會(huì)在幾厘米或者幾米的距離而不是光纖內(nèi)的某個(gè)局部點(diǎn)漏出,從而大限度地降低損傷。Thorlabs生產(chǎn)并銷(xiāo)售0.22 NA雙包層多模光纖,它們能將適用功率提升百萬(wàn)瓦的范圍。
光暗化
光纖內(nèi)的第二種損傷機(jī)制稱(chēng)為光暗化或負(fù)感現(xiàn)象,一般發(fā)生在紫外或短波長(zhǎng)可見(jiàn)光,尤其是摻鍺纖芯的光纖。在這些波長(zhǎng)下工作的光纖隨著曝光時(shí)間增加,衰減也會(huì)增加。引起光暗化的原因大部分未可知,但可以采取一些列措施來(lái)緩解。例如,研究發(fā)現(xiàn),羥基離子(OH)含量非常低的光纖可以抵抗光暗化,其它摻雜物比如氟,也能減少光暗化。
即使采取了上述措施,所有光纖在用于紫外光或短波長(zhǎng)光時(shí)還是會(huì)有光暗化產(chǎn)生,因此用于這些波長(zhǎng)下的光纖應(yīng)該被看成消耗品。
制備和處理光纖
通用清潔和操作指南
建議將這些通用清潔和操作指南用于所有的光纖產(chǎn)品。而對(duì)于具體的產(chǎn)品,用戶還是應(yīng)該根據(jù)輔助文獻(xiàn)或手冊(cè)中給出的具體指南操作。只有遵守了所有恰當(dāng)?shù)那鍧嵑筒僮鞑襟E,損傷閾值的計(jì)算才會(huì)適用。
安裝或集成光纖(有終端的光纖或裸纖)前應(yīng)該關(guān)掉所有光源,以避免聚焦的光束入射在接頭或光纖的脆弱部分而造成損傷。
光纖適用的功率直接與光纖/接頭端面的質(zhì)量相關(guān)。將光纖連接到光學(xué)系統(tǒng)前,一定要檢查光纖的末端。端面應(yīng)該是干凈的,沒(méi)有污垢和其它可能導(dǎo)致耦合光散射的污染物。另外,如果是裸纖,使用前應(yīng)該剪切,用戶應(yīng)該檢查光纖末端,確保切面質(zhì)量良好。
如果將光纖熔接到光學(xué)系統(tǒng),用戶先應(yīng)該在低功率下驗(yàn)證熔接的質(zhì)量良好,然后在高功率下使用。熔接質(zhì)量差,會(huì)增加光在熔接界面的散射,從而成為光纖損傷的來(lái)源。
對(duì)準(zhǔn)系統(tǒng)和優(yōu)化耦合時(shí),用戶應(yīng)該使用低功率;這樣可以大程度地減少光纖其他部分(非纖芯)的曝光。如果高功率光束聚焦在包層、涂覆層或接頭,有可能產(chǎn)生散射光造成的損傷。
高功率下使用光纖的注意事項(xiàng)
一般而言,光纖和光纖元件應(yīng)該要在安全功率水平限制之內(nèi)工作,但在理想的條件下(佳的光學(xué)對(duì)準(zhǔn)和非常干凈的光纖端面),光纖元件適用的功率可能會(huì)增大。用戶先必須在他們的系統(tǒng)內(nèi)驗(yàn)證光纖的性能和穩(wěn)定性,然后再提高輸入或輸出功率,遵守所有所需的安全和操作指導(dǎo)。以下事項(xiàng)是一些有用的建議,有助于考慮在光纖或組件中增大光學(xué)功率。
要防止光纖損傷光耦合進(jìn)光纖的對(duì)準(zhǔn)步驟也是重要的。在對(duì)準(zhǔn)過(guò)程中,在取得佳耦合前,光很容易就聚焦到光纖某部位而不是纖芯。如果高功率光束聚焦在包層或光纖其它部位時(shí),會(huì)發(fā)生散射引起損傷
使用光纖熔接機(jī)將光纖組件熔接到系統(tǒng)中,可以增大適用的功率,因?yàn)樗梢源蟪潭鹊販p少空氣/光纖界面損傷的可能性。用戶應(yīng)該遵守所有恰當(dāng)?shù)闹笇?dǎo)來(lái)制備,并進(jìn)行高質(zhì)量的光纖熔接。熔接質(zhì)量差可能導(dǎo)致散射,或在熔接界面局部形成高熱區(qū)域,從而損傷光纖。
連接光纖或組件之后,應(yīng)該在低功率下使用光源測(cè)試并對(duì)準(zhǔn)系統(tǒng)。然后將系統(tǒng)功率緩慢增加到所希望的輸出功率,同時(shí)周期性地驗(yàn)證所有組件對(duì)準(zhǔn)良好,耦合效率相對(duì)光學(xué)耦合功率沒(méi)有變化。
由于劇烈彎曲光纖造成的彎曲損耗可能使光從受到應(yīng)力的區(qū)域漏出。在高功率下工作時(shí),大量的光從很小的區(qū)域(受到應(yīng)力的區(qū)域)逃出,從而在局部形成產(chǎn)生高熱量,進(jìn)而損傷光纖。請(qǐng)?jiān)诓僮鬟^(guò)程中不要破壞或突然彎曲光纖,以盡可能地減少?gòu)澢鷵p耗。
用戶應(yīng)該針對(duì)給定的應(yīng)用選擇合適的光纖。例如,大模場(chǎng)光纖可以良好地代替標(biāo)準(zhǔn)的單模光纖在高功率應(yīng)用中使用,因?yàn)榍罢呖梢蕴峁└训墓馐|(zhì)量,更大的MFD,且可以降低空氣/光纖界面的功率密度。
階躍折射率石英單模光纖一般不用于紫外光或高峰值功率脈沖應(yīng)用,因?yàn)檫@些應(yīng)用與高空間功率密度相關(guān)。
多模光纖跳線,F(xiàn)C/PC或SMA接頭平切端,Ø400 µm,數(shù)值孔徑0.39,低羥基
Item # | Fiber | Core | Cladding | Coating | NA | Bend Radius | Wavelength | Attenuation | Connectors | Jacket | Stripping |
|
M118L03 | FT400EMT | 400 ± 8 µm | 425 ± 10 µm | 730 ± 30 µm | 0.39 | 20 mm / 40 mm | 400 to 2200 nm | SMA90 to Flat Cleave | FT030 | T21S31 | S90R | |
M119L03 | FC/PCb to Flat Cleave |
不銹鋼插芯
陶瓷插芯
產(chǎn)品型號(hào) | 公英制通用 |
M118L03 | Customer Inspired! 多模光纖跳線,SMA905接頭平切端,Ø400 µm,數(shù)值孔徑0.39,3 m |
M119L03 | Customer Inspired! 多模光纖跳線,F(xiàn)C/PC接頭平切端,Ø400 µm,數(shù)值孔徑0.39,3 m |
損傷的光纖端面